Metallographic cooling rates and origin of IVA iron meteorites

نویسندگان

  • Jijin Yang
  • Joseph I. Goldstein
  • Edward R.D. Scott
چکیده

We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 C/Myr at the low-Ni end of the group to 100 C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700–400 C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites

We report a pilot study of a new technique to use the distribution of Co between kamacite and taenite to infer relative cooling rates of iron meteorites; data of Widge and Goldstein (1977) showed that the distribution is temperature dependent. A plot of the logarithm of the double ratio [(Co/Ni)kamacite/(Co/Ni)taenite] (abbreviated Rac) against inverse temperature yields a linear equation showi...

متن کامل

Iron meteorites: Crystallization, thermal history, parent bodies, and origin

We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, ...

متن کامل

Nucleation of the Widmanstatten Pattern in Iron Meteorites

Introduction: The Widmanstatten pattern develops at low temperatures during the evolution of the asteroids. We have studied the origin of the Widmanstatten pattern in order to obtain metallographic cooling rates in the temperature range (~ 700 to 300 deg C). This paper summarizes our recent evaluation of the various mechanisms for the formation of the Widmanstatten pattern. All chemical groups ...

متن کامل

Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces

Analyses and modeling of Ni zoning in taenite in differentiated meteorites provide metallographic cooling rates at 500 C that are inconsistent with conventional formation models. Group IVA iron meteorites have very diverse cooling rates of 100–6600 C/Myr indicating that they cooled inside a large metallic body with little or no silicate mantle (Yang et al., 2007). Wasson and Hoppe (2012) have q...

متن کامل

Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history

We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008